
Comparing and Contrasting different Approaches
of Code Generator(Enum,Map-Like,If-else,Graph)

Vivek Tripathi1 Sandeep kumar Gonnade2

Mtech Scholar1 Asst.Professor2

Department of Computer Science & Engineering,

Mats University,Aarang,C.G,India.

Abstract— Code generators are very useful tools to reduce the
effort to develop a software system. They had a very important
role to automatically implement the models created by
designers. However, as the complexity of code generators
grow, they tend to be harder to maintain, especially when
there is a large amount of overhead involved. This paper
throws a light on the approaches of code generation for
regular expression and finite automata and made a
comparison between them, so that we can analyse a technique
to generate code based on this approaches.

Keywords— Regular Expression, Code Generators, Enum,
Map-Like, If-else, Graph, NFA,DFA.

I. INTRODUCTION

A code generator is “a software tool that accepts as input
the requirements or design for a computer program and
produces source code that implements the requirements or
design” [3].

The idea of automatic software generation has regained
strength during the last years, particularly for enterprise
applications. The development of these applications, which
include support for distributed processing across the
Internet and multi-layered architectures

Code generation is the technique of writing and using
programs that build application and system code. To
understand code generation, you need to understand what
goes in and what comes out.

Fig 1. The process of code generation

The code generator reads in the design, then uses a set of
templates to build output code that implements the design.
The separation between code generation logic in the
generator and output formatting in the templates is akin to

the separation between business logic and user interfaces in
web applications. The idea of automatic software
generation has regained strength during the last years,
particularly for enterprise applications. The development of
these applications, which include support for distributed
processing across the Internet and multi-layered
architectures with the following characteristics [4]:

 Quality: We want the output code to be at least as
good as what we would have written by hand.

 Consistency: The code should use consistent class,
method, and argument names. This is also an area
where generators excel because, after all, this is a
program writing your code.

 Productivity: It should faster to generate the code
than to write it by hand.

 Abstraction: We should be able to specify the
design in an abstract form, free of implementation
details. That way we can re-target the generator at a
later date if we want to move to another technology
platform.

Creation of a Code Generator for Regular Expressions
takes the following steps to be followed [5]:

 From input regular expression to its respective
grammar.

 From regular expression to nondeterministic
automaton.

 From NFA to its equivalent deterministic automaton.
 Final generation of java source code using code

generators for that DFA.

A very common approach to implement code generators
is the use of templates. A template describes a way to
generate a piece of code from a set of input data, often in
the form of models [6]. Template languages can be used to
specify the structure of templates and include mechanisms
to reference elements from the input data, to perform code
selection, and iterative expansion [6]. It offers a degree of
flexibility in code generation, since one can substitute
templates to generate code for different platforms or
architectures. However, as the complexity of a code
generator grows, more templates are required to be
maintained. Moreover, template debugging can be difficult
and error prone, since one must first generate code from

Templates

Code
Generator

Design Code

Vivek Tripathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3046-3050

www.ijcsit.com 3046

those templates, execute and debug that code, and then
propagate the corrections back to the template. Overall, the
more templates a code generator has, the harder is its
evolution and maintenance.

By code generation we mean the compiler’s process of

converting some of intermediate representation of source
code (in this case graphs) into an independent Java Class
that whenever is executed represent the same graph
automaton. As input for a code generator can be parse trees
or abstract syntax trees. We use abstract syntax trees that
later on are converted into an intermediate language
(sequence of instruction) such as graphs.[7]

Ullman in [1] described a “compiler” for regular

expressions are useful to turn the expressions we write into
executable code. During this project instead of compiler we
will use two other terms: Automatic Programming, and/or
Code Generator. Automatic programming identifies a type
of computer programming mechanism that generates a
computer program (source code) to allow programmers to
write high level code. Code Generators or Application
generators are software tools that help programmers to
generate a complete program or part of it in a very quick
way according to the given input specification [8]. Using
code generators the programmer can easily edit or modify
and execute the output source (program).

The major advantages of using code generators are:

 Saving a lot of development time
 Useful as a learning tool for writing code
 Programs are easy to modify and maintain

A. Regular Expression

A regular expression is a special sequence of characters
that helps you match or find other strings or sets of strings,
using a specialized syntax held in a pattern. They can be
used to search, edit, or manipulate text and data.

The java.util.regex package primarily consists of the
following three classes.

 Pattern Class: A Pattern object is a compiled
representation of a regular expression. The Pattern
class provides no public constructors. To create a
pattern, you must first invoke one of its public static
compile methods, which will then return a Pattern
object. These methods accept a regular expression as
the first argument.

 Matcher Class: A Matcher object is the engine that
interprets the pattern and performs match operations
against an input string. Like the Pattern class,
Matcher defines no public constructors. You obtain a
Matcher object by invoking the matcher method on a
Pattern object.

 PatternSyntaxException: A PatternSyntaxException
object is an unchecked exception that indicates a
syntax error in a regular expression pattern.

To develop regular expressions, ordinary and special
characters are used:

TABLE 1
USAGE OF SPECIAL CHARECTERS IN RE

B. Code Generators

The code generator takes as input the reference source
code from the previous project, uses the regular expressions
specified in the component parameterization to find all of
the relevant places in the code, and substitutes those places
with the information of the project-specific module
configuration. The result is a new source code module that
can be directly incorporated into the current project. The
code generator can also modify the source code of the
current project to better integrate the desired module.

Fig. 2 Overview of the code generator

II. APPROACHES OF CODE GENERATION

Following are the ways to interpret an automaton using
Java Code.
A. The Enum Approach

Enums are essentially list of classes, and each member of
the enum may have a different implementation. Each enum
element may have a different implementation. For example,
et us assume that we want to implement the automaton, that
represent this regular expression R =^(a+)(b*)(c*)$. We
can write the states as elements of the Enum State as
follows:

/$ ^ . * \.

+ ? [] [^...]

[...] \w re* (?: re) \n

^regex X|Z re+ re? (re)

re{ n} (?> re) \b \Q \E

Reference source code

Current Source
Code

Specific Component
Configuration Parameterizing

Modified Source Code

Code Generation
Framework

Properties File

Substituting Regular
Expression

Vivek Tripathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3046-3050

www.ijcsit.com 3047

TABLE 2
THE ENUM APPROACH

The advantage of using enum approach is that it is clean
and Simple approach. All the logic of the automaton is in
the same place and it is easy to trace the automaton.Each
enum element describes its functionality, by this we mean
that each transition is defined.

B. The Map- like Approach

The transitions of a DFA automaton using the map-like
approach looks like: hashMap<HashMap<State,Input>,
State> that means that for each state on each input we go to
another state, where HashMap<State,Input> is the unique
key representing the state from where on an input we go to
another State represented as the value of the map.

The map is ordered according to the natural ordering of
its keys, or by a Comparator typically provided at sorted
map creation time. This order is reflected when iterating
over the sorted map's collection views.
For example, if we want an object implement the Map
interface and iterate over every pair contained within it, the
following line of code will give the ordering of elements
depending on the specific map implementation.

TABLE 3
THE MAP-LIKE APPROACH

C. The If-Else Approach

The if-else approach is an easy way to implementing a
DFA automaton, such a way works by creating an if
statement for each input and the state of the automaton.For
example, let us assume that we want to implement the
automaton for the shown above; the if-else approach will
work as follows.

TABLE 4

THE IF-ELSE APPROACH

public class className {
 protected final int state2 = 2; protected final int state1 = 1;
protected final int state0 = 0; protected final int deadState =
-1;
protected int currentState = 0;
public void update(String edge) {
 if(currentState == state2 && edge.equals("b"))
{ currentState =
 state2;

}
 else if(currentState == state1&& edge.equals("a"))

{
currentState = state1;
}
else if(currentState == state1 && edge.equals("a")) {
currentState = state1;
}
 else if(currentState == state2 && edge.equals("b")) {
currentState = state2;
}
else { currentState = deadState; }}
public boolean matches()
{
if ((currentState == state2 || currentState == state1))
return true;
else
return false; }
}

D. The Graph Approach

To represent the automaton the first thing we have to do is
build that automaton, so we should create for each state of
the DFA a node in the Java class, and for each arc between
states and edge should be created. All the nodes and edges
are created in the buildGraph () method, where each node
and edge is labeled.

Following procedures are to be followed in this approach:
1. A global SetBasedDirectedGraph is created, together

with all kind of statedefinitions: state, dead state,
edge, current state.

interface State {
 public State next();
}

class Input {
 private String input;
 private int current;
 public Input(String input) {this.input = input;}
 char read() { return input.charAt(current++); }
}

enum States implements State {
 State0 {
 @Override
 public State next (Input input) {
 switch (input.read ()) {
 case 'a': return State1;
 default: return DeadState ;} }
},
 State1 {
 @Override
 public State next (Input input) {
 switch(input.read()) {
 case 'a': return State1;
 case 'b': return State2;
case 'c': return State3;
case '': return null;
default: return DeadState ;} }
},
...
 DeadState {
 @Override
 public State next (Input input) {

return DeadState ;}
};

for(Map.Entry<String,String> entry : map.entrySet())
{
System.out.println(entry.getKey()+"/"+
entry.getValue());
}

Vivek Tripathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3046-3050

www.ijcsit.com 3048

2. To create a node, you must use the method
createNode of the SetBasedDirectedGraph,and as a
parameter the id of that node should be given.

3. The edges are created using the createEdge method of
the SetBasedDirectedGraph class, where the source
and the target must be specified, the label is added by
using setPropertymethod.

After the end of the input string has been reached, the
match’s method is called, that simply checks if the
description of the current node is Accepted or Initial &
Accepted.

III. COMPARING APPROACHES OF CODE GENERATION

A. Conversion
Each conversion is defined in Enum approach, therefore

it is easy to trace the automaton as the logic is in same
place.

In comparison to map-like structure, the conversion is
done with the help of a unique key representing the state
from where on an input we go to another State represented
as the value of the map.

The moves in the if-else approach is done with the help of
update method in which transforms the current state of the
automaton into another state depending on which input
character of the input string is next read. When there is no
more characters to be read from the input string the matches
method is called, which simply checks if the current state of
the automaton is one of the accepted states.

Whereas in Graph approach the transitions are represented
by connecting two nodes with an edge.

B. Execution

Each state is having enum element, and each of these
element is having different execution. In map-like keys
represents the inputs and values represent the states.

Whereas in if-else an easy way of implementing
automaton is done, by creating an if statement for each
input and the state of the automaton. The graph approach
takes representation of graph in adjacency matrix and
adjacency list.

C. Debugging

Moreover, debugging of those templates requires that
developers first generate code using the templates, compile
that code, execute it, determine whether the generated code
behaves consistently or not with the reference source code.

In contrast, the Graph approach does not require to
manually creating new files for each reference source file.
Therefore, the risk of having an incorrect representation of
the reference source code is reduced.

Bugs in regular expressions may also yield unwanted
changes in the source code, which may be difficult to
detect. However, static type checking languages, such as
Java, might increase the chances of detecting those errors at
compile-time.
Overall, both approaches have different advantages and
disadvantages. Therefore it cannot be said that one
approach is better than the other in terms of debugging.

D. Sustainability
Overall, creation of new generators over time requires a
similar effort for both approaches. However, changing an
existing generator is significantly easier for the map-like
approach, since it usually requires only to modify the
reference source code. Moreover, the essential structure of a
code generator is more stable in the regular expression
approach, since enum approaches frequently require
changes in templates whenever developers want to evolve a
generator. If- else approaches only need changes in the
reference source code. Therefore, maintainability is better
for the enum approach.

Table 5 summarizes the comparison between the
approaches. The symbol ‘+’ indicates that the
corresponding approach is better than the other according to
the corresponding criteria. The symbol ‘-’ indicates that the
approach is worse than the other. The symbol ‘=’ indicates
that both approaches satisfy the criteria similarly.

TABLE 5

COMPARISONS BETWEEN CODE GENERATION APPROACHES

Criterion
Approach

Enum Map-Like If-Else Graph

Conversion + _ + _

Execution + + = =

Debugging + _ = =

Sustainability + _ _ +

CONCLUSIONS

This paper provides an idea about the approaches of code
generation and made a contrast between them. This
comparison shows that Enum approach is having a better
functionality among all. As its implementation takes larger
memory space because for each state enum element is
created.

A better solution is required to simplify and minimize the
source code, but so far it has not been proven that they are
correct for each case, so that is a work to be done in future.
Providing the enum and the map like approach while
implementing finite automata using the source code
generator will help programmers increase the productivity.

ACKNOWLEDGMENT

This paper has been kept on track and been seen through to
completion with the support and encouragement of
numerous people including my well-wishers and my friends.
At this moment of accomplishment, first of all I pay
homage to my guide. This work would not have been
possible without his guidance, support and encouragement.
Under his guidance I successfully overcame many
difficulties and learned a lot. I can’t forget his hard times.

Vivek Tripathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3046-3050

www.ijcsit.com 3049

REFERENCES
[1] A.V.Aho and J. D. Ullman “Patterns, Automata and Regular

Expressions” in Foundations of Computer Science, NewYork:W.H.
Freeman & Company, 2010.

[2] P. Linz “Introduction to Theory of Computation; Finite Automata;
Regular Languages and Regular Grammars” in An Introduction to
Formal Languages and Automata, 3rd ed. Massachusetts: Jones &
Bartlett Learning, 2010.

[3] IEEE Standard Glossary of Software Engineering
Terminology/IEEE
Std 610.12-1990. Inst of Elect & Electronic, 2009.

[4] Suejb Memeti, “Automatic Java Code Generator for Regular
Expression and Finite Automata”, Degree Project, Course code:
5DV00E, 2012.
K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Systems Journal, vol. 45, no. 3,
pp.621–645, 2006.5DV00E, 2012.

[5] ANTLR (2005), Abstract Syntax Tree, [Online], Available:
http://www.antlr2.org/doc/trees.html.

[6] Arora, Sh. Bansal and A. Arora “ Application Generators” in
Comprehensive Computer and Languages, New York: Firewall
Media, 2005, ch. 2 sec. 4.1, pp. 41

[7] R.Sinha at International Journal of Computer Trends & Technology
“Transmutation of Regular Expression to Source Code using Code
Generators”,Vol 3(6), 2012, pp 787-791.

[8] Christin Lungu (2012), Automaton Implementation in Java,
[Online], Available:
http://java.dzone.com/articles/automaton-implementation-java

Vivek Tripathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3046-3050

www.ijcsit.com 3050

